首页> 中文期刊> 《金属学报:英文版》 >Wear Performance and Corrosion Behavior of Nano-SiCp-Reinforced AlSi7Mg Composite Prepared by Selective Laser Melting

Wear Performance and Corrosion Behavior of Nano-SiCp-Reinforced AlSi7Mg Composite Prepared by Selective Laser Melting

         

摘要

It is one of the future trends to create materials in situ by laser additive manufacturing. AlSi7Mg/nano-SiCp composites were successfully in situ prepared by selective laser melting in our previous study. After adding 2 wt% nano-SiC particles, the tensile stress and strain increased to 502.94 ± 6.40 MPa and 10.64 ± 1.06%, respectively. For the first time in the present study, we systematically studied and compared the wear performance and corrosion behavior of AlSi7Mg with its composite. We conducted the ball-on-fl at frictional wear test at room temperature, potentiodynamic polarization, electrochemical impedance spectroscopy(EIS), and the immersion corrosion tests in 3.5 wt% NaCl solution. The results showed that composite had higher wear resistance, while AlSi7Mg was more resistant to pitting corrosion. However, the further pitting corrosion of composite was restrained because of the in situ phase nano-Al4C3 and the residual nano-SiCp.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号