首页> 中文期刊>金属学报:英文版 >Atomistic simulation of tension deformation behavior in magnesium single crystal

Atomistic simulation of tension deformation behavior in magnesium single crystal

     

摘要

The deformation behavior in magnesium single crystal under c-axis tension is investigated in a temperature range between 250 K and 570 K by molecular dynamics simulations. At a low temperature, twinning and shear bands are found to be the main deformation mechanisms. In particular, the {102} tension twins with the reorientation angle of about 90 °are observed in the simulations. The mechanisms of {102} twinning are illustrated by the simulated motion of atoms. Moreover, grain nucleation and growth are found to be accompanied with the {102} twinning. At temperatures above 450 K, the twin frequency decreases with increasing temperature. The {102} extension twin almost disappears at the temperature of 570 K. The non-basal slip plays an important role on the tensile deformation in magnesium single crystal at high temperatures.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号