首页> 中文期刊> 《钢铁研究学报:英文版》 >Formation mechanism of surface oxide layer of grain-oriented silicon steel

Formation mechanism of surface oxide layer of grain-oriented silicon steel

         

摘要

The surface oxide layer of grain-oriented electrical steels was investigated by scanning electron microscopy.The formation mechanism and the influence on the glass film of the surface oxide layer were analyzed by the calculation of thermodynamics and kinetics.The surface oxide layer with 2.3μm in thickness is mainly composed of SiO_(2),a small amount of FeO and Fe_(2)SiO_(4).During the formation of surface oxide layer,the restriction factor was the diffusion of O in the oxide layer.At the initial stage of the decarburization annealing,FeO would be formed on the surface layer.SiO_(2) and silicate particles rapidly nucleated,grew and formed a granular oxide layer in the subsurface.As the oxidation layer thickens,the nucleation of new particles decreases,and the growth of oxide particles would be dominant.A lamellar oxide layer was formed between the surface oxide layer and the steel matrix,and eventually formed a typical three-layer structure.During the high temperature annealing,MgO mainly reacted with SiO_(2) and Fe_(2)SiO_(4) in the surface oxide layer to form Mg2SiO_(4) and Fe_(2)SiO_(4) would respond first,thus forming the glass film with average thickness of 4.87μm.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号