首页> 外文期刊>钢铁研究学报(英文版) >Effect of increased nitrogen content on continuous cooling transition ofγ→αin hot-deformed low-C Mo–V–Ti steels
【24h】

Effect of increased nitrogen content on continuous cooling transition ofγ→αin hot-deformed low-C Mo–V–Ti steels

机译:氮含量增加对热变形低碳Mo-V-Ti钢中γ→α连续冷却转变的影响

获取原文
获取原文并翻译 | 示例
       

摘要

The two-stage controlled rolling and cooling at 0.5–50 ?C/s of low-carbon Mo–V–Ti steels with the increasing nitrogen content from 0.0032 to 0.0081 and 0.0123 wt.%were simulated through a Gleeble 3500 system. The continuous cooling transition (CCT) of γ→α in each steel was estimated via microstructure characterization and CCT diagram. The results indicated that CCT diagram for each steel was divided into three regions ofγ→ferrite,γ→pearlite andγ→bainite, and the increasing N content elevated all the starting temperatures forγ→α. Consequently, the polygonal ferrite (PF) and pearlite formed in each steel cooled at 1 ?C/s and, however, the increasing N content led to slightly coarser ferrite grain and pearlite colony. With the increased cooling rate to 10 and 30 ?C/s, a mixed microstructure of acicular ferrite (AF), granular bainite (GB) and lath bainite (LB) formed in 32N steel and in contrast, the mixture of PF+AF+GB in 81N and 123N steels. The increasing N content promoted (Ti,V)(C,N) precipitation, enhanced the intragranular PF/AF nucleation, increased martensite/austenite constituent and depressed LB. In addition, the mechanisms dominating the effect of increasing N on this CCT ofγ→αwere discussed.
机译:通过Gleeble 3500系统模拟了低氮含量从0.0032增加到0.0081和0.0123 wt。%的低碳Mo-V-Ti钢的两阶段控制轧制和冷却,以0.5–50?C / s的速度进行。通过显微组织表征和CCT图估算了每种钢中γ→α的连续冷却转变(CCT)。结果表明,每种钢的CCT图分为γ→铁素体,γ→珠光体和γ→贝氏体三个区域,随着N含量的增加,γ→α的所有起始温度均升高。因此,在每种钢中形成的多角形铁素体(PF)和珠光体均以1?C / s的速度冷却,但是,随着N含量的增加,铁素体晶粒和珠光体菌落会稍粗一些。随着冷却速度提高到10和30?C / s,在32N钢中形成针状铁素体(AF),粒状贝氏体(GB)和板条贝氏体(LB)的混合微观结构,而PF + AF +的混合物GB在81N和123N钢中。氮含量的增加促进了(Ti,V)(C,N)的析出,增强了颗粒内PF / AF的成核作用,增加了马氏体/奥氏体成分并降低了LB.此外,还讨论了控制氮增加对γ→αCCC的影响的机制。

著录项

  • 来源
    《钢铁研究学报(英文版)》 |2019年第7期|733-742|共10页
  • 作者单位

    State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, Hebei, China;

    Qinhuangdao Vocational and Technical College, Qinhuangdao 066100, Hebei, China;

    State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, Hebei, China;

    National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004, Hebei, China;

    State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, Hebei, China;

    National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004, Hebei, China;

    State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, Hebei, China;

    National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004, Hebei, China;

    State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, Hebei, China;

    National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004, Hebei, China;

    State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, Hebei, China;

    National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004, Hebei, China;

  • 收录信息 中国科学引文数据库(CSCD);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号