首页> 中文期刊> 《哈尔滨工业大学学报:英文版 》 >Review:Recent Advancement of Experimental and Numerical Investigations for Breaking Waves

Review:Recent Advancement of Experimental and Numerical Investigations for Breaking Waves

             

摘要

Breaking wave is a complex physical phenomenon that takes place at the gas fluid interface which is the chief reason for the generation of two phase turbulence wave energy dissipation and mass transfer between air and water. For marine hydrodynamics the breaking bow wave of high speed vessels induces the bubble mixed flow travelling around the ship eventually developing to be the turbulent wake which is easy to be detected by photoelectric equipment. Besides the flow induced noise stemming from wave plunging may weaken the acoustic stealth of water surface craft. In the oceanographic physics context wave breaking accounts for the energy and mass exchange of the ocean atmosphere system which has a great effect on the weather forecasts and global climate predictions. Due to multi scale properties of multiphase turbulent flows a wide range of time and length scales should be resolved making it rather complicated for experimental and numerical investigations. In early reviews[1-4] general mechanisms related to wave breaking problems are well described. However previous emphasis lies on the phenomenological characteristics of breaking wave. Thus this review summarizes the recent experimental and numerical advances of the studies of air entrainment bubble distribution energy dissipation capillary effect and so on.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号