首页> 中文期刊>环境科学学报:英文版 >Biofilm response and removal via the coupling of visible-light-driven photocatalysis and biodegradation in an environment of sulfamethoxazole and Cr(Ⅵ)

Biofilm response and removal via the coupling of visible-light-driven photocatalysis and biodegradation in an environment of sulfamethoxazole and Cr(Ⅵ)

     

摘要

The widespread contamination of water systems with antibiotics and heavy metals has gained much attention.Intimately coupled visible-light-responsive photocatalysis and biodegradation(ICPB)provides a novel approach for removing such mixed pollutants.In ICPB,the photocatalysis products are biodegraded by a protected biofilm,leading to the mineralization of refractory organics.In the present study,the ICPB approach exhibited excellent photocatalytic activity and biodegradation,providing up to~1.27 times the degradation rate of sulfamethoxazole(SMX)and 1.16 times the Cr(Ⅵ)reduction rate of visiblelight-induced photocatalysis.Three-dimensional fluorescence analysis demonstrated the synergistic ICPB effects of photocatalysis and biodegradation for removing SMX and reducing Cr(Ⅵ).In addition,the toxicity of the SMX intermediates and Cr(Ⅵ)in the ICPB process significantly decreased.The use of MoS_(2)/CoS_(2)photocatalyst accelerated the separation of electrons and holes,with·O_(2)^(–)and h+attacking SMX and ereducing Cr(Ⅵ),providing an effective means for enhancing the removal and mineralization of these mixed pollutants via the ICPB technique.The microbial community results demonstrate that bacteria that are conducive to pollutant removal are were enriched by the acclimation and ICPB operation processes,thus significantly improving the performance of the ICPB system.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号