首页> 中文期刊> 《环境科学学报:英文版》 >Structure and function of rhizosphere and non-rhizosphere soil microbial community respond differently to elevated ozone in field-planted wheat

Structure and function of rhizosphere and non-rhizosphere soil microbial community respond differently to elevated ozone in field-planted wheat

         

摘要

To assess the responses of the soil microbial community to chronic ozone(O_3), wheat seedlings(Triticum aestivum Linn.) were planted in the field and exposed to elevated O_3(e O_3)concentration. Three treatments were employed:(1) Control treatment(CK), AOT40 = 0;(2) O_3-1, AOT40 = 1.59 ppm·h;(3) O_3-2, AOT40 = 9.17 ppm·h. Soil samples were collected for the assessment of microbial biomass C, community-level physiological profiles(CLPPs), and phospholipid fatty acids(PLFAs). EO_3 concentration significantly reduced soil microbial carbon and changed microbial CLPPs in rhizosphere soil, but not in non-rhizosphere soil.The results of the PLFAs showed that e O_3 concentrations had significant effects on soil community structure in both rhizosphere and non-rhizosphere soils. The relative abundances of fungal and actinomycetous indicator PLFAs decreased in both rhizosphere and non-rhizosphere soils, while those of bacterial PLFAs increased. Thus the results proved that e O_3 concentration significantly changed the soil microbial community function and composition, which would influence the soil nutrient supply and carbon dynamics under O_3 exposure.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号