首页> 中文期刊>环境科学学报:英文版 >Interactions of fluoroquinolone antibiotics with sodium hypochlorite in bromide-containing synthetic water:Reaction kinetics and transformation pathways

Interactions of fluoroquinolone antibiotics with sodium hypochlorite in bromide-containing synthetic water:Reaction kinetics and transformation pathways

     

摘要

Seven popular fluoroquinolone antibiotics(FQs)in synthetic marine aquaculture water were subject to sodium hypochlorite(NaClO)disinfection scenario to investigate their reaction kinetics and transformation during chlorination.Reactivity of each FQ to NaClO was following the order of ofloxacin(OFL)>enrofloxacin(ENR)>lomefloxacin(LOM)>ciprofloxacin(CIP)?norfloxacin(NOR)>>pipemedic acid(PIP),while flumequine did not exhibit reactivity.The coexisting chlorine ions and sulfate ions in the water slightly facilitated the oxidation of FQs by NaClO,while humic acid was inhibitable to their degradation.The bromide ions promoted degradation of CIP and LOM,but restrained oxidation of OFL and ENR.By analysis of liquid chromatography with tandem mass spectrometry(LC-MS/MS),eight kinds of emerging brominated disinfection byproducts(Br-DBPs)caused by FQ S were primarily identified in the chlorinated synthetic marine culture water.Through density functional theory calculation,the highest-occupied molecular orbital(HOMO)and the lowest-unoccupied molecular orbital(LUMO)characteristic as well as the charge distribution of the FQs were obtained to clarify transformation mechanisms.Their formation involved decarboxylation,ring-opening/closure,dealkylation and halogenation.Chlorine substitution occurred on the ortho-position of FQs's N4 and bromine substitution occurred on C8 position.The piperazine ring containing tertiary amine was comparatively stable,while this moiety with a secondary amine structure would break down during chlorination.Additionally,logK_(ow)and log BAF of transformation products were calculated by EPI-Suite^(TM)to analyze their bioaccumulation.The values indicated that Br-DBPs are easier to accumulate in the aquatic organism relative to their chloro-analogues and parent compounds.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号