首页> 中文期刊>环境科学学报:英文版 >Tetracycline removal via adsorption and metal-free catalysis with 3D macroscopic N-doped porous carbon nanosheets:Non-radical mechanism and degradation pathway

Tetracycline removal via adsorption and metal-free catalysis with 3D macroscopic N-doped porous carbon nanosheets:Non-radical mechanism and degradation pathway

     

摘要

Recently,metal-based carbon materials have been verified to be an effective persulfate activator,but secondary pollution caused by metal leaching is inevitable.Hence,a green metalfree 3D macroscopic N-doped porous carbon nanosheets(NPCN)was synthesized successfully.The obtained NPCN showed high adsorption capacity of tetracycline(TC)and excellent persulfate(PS)activation ability,especially when calcined at 700℃(NPCN-700).The maximum adsorption capacity of NPCN-700 was 121.51 mg/g by H-bonds interactions.Moreover,the adsorption process followed pseudo-second-order kinetics model and Langmuir adsorption isotherm.The large specific surface area(365.27 mg/g)and hierarchical porous structure of NPCN-700 reduced the mass transfer resistance and increased the adsorption capacity.About 96.39%of TC was removed after adding PS.The effective adsorption of the catalyst greatly shortened the time for the target organic molecules to migrate to the catalyst.Moreover,the NPCN-700 demonstrated high reusability with the TC removal rate of 80.23%after 4 cycles.Quenching experiment and electron paramagnetic resonance(EPR)test confirmed the non-radical mechanism dominated by ^(1)O_(2).More importantly,the C=O groups,defects and Graphitic N acted as active sites to generate ^(1)O_(2).Correspondingly,electrochemical measurement revealed the direct electron transfer pathway of TC degradation.Finally,multiple degradation intermediates were recognized by the LC-MS measurement and three possible degradation pathways were proposed.Overall,the prepared NPCN had excellent application prospects for removal of antibiotics due to its remarkable adsorption and catalytic degradation capabilities.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号