首页> 中文期刊> 《能源化学:英文版》 >Electrospun CuFe2O4 nanotubes as anodes for high-performance lithium-ion batteries

Electrospun CuFe2O4 nanotubes as anodes for high-performance lithium-ion batteries

         

摘要

Herein,we report on the synthesis and lithium storage properties of electrospun one-dimensional(1D) CuFe_2O_4 nanomaterials.1D CuFe_2O_4nanotubes and nanorods were fabricated by a single spinneret electrospinning method followed by thermal decomposition for removal of polymers from the precursor fibers.The as-prepared CuFe_2O_4 nanotubes with wall thickness of ~50 nm presented diameters of ~150 nm and lengths up to several millimeters.It was found that phase separation between the electrospun composite materials occured during the electrospinning process,while the as-spun precursor nanofibers composed of polyacrylonitrile(PAN),polyvinylpyrrolidone(PVP) and metal salts might possess a core-shell structure(PAN as the core and PVP/metal salts composite as the shell) and then transformed to a hollow structure after calcination.Moreover,as a demonstration of the functional properties of the 1D nanostructure.CuFe_2O_4 nanotubes and nanorods were investigated as anodes for lithium ion batteries(LIBs).It was demonstrated that CuFe_2O_4 nanotubes not only delivered a high reversible capacity of ~816 mAh·g^(-1) at a current density of 200 mA·g^(-1)over 50 cycles,but also showed superior rate capability with respect to counterpart nanorods.Probably,the enhanced electrochemical performance can be attributed to its high specific surface areas as well as the unique hollow structure.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号