首页> 外文期刊>棉花研究(英文) >An isopentyl transferase gene driven by the senescence-inducible SAG12 promoter improves salinity stress tolerance in cotton
【24h】

An isopentyl transferase gene driven by the senescence-inducible SAG12 promoter improves salinity stress tolerance in cotton

机译:衰老诱导型SAG12启动子驱动的异戊基转移酶基因提高了棉花的盐分胁迫耐受性

获取原文
获取原文并翻译 | 示例
       

摘要

Background:Soil salinity seriously affects cotton growth,leading to the reduction of yield and fiber quality.Recently,genetic engineering has become an efficient tool to increase abiotic stress tolerance in crops.Results:In this study,isopentyl transferase(IPT),a key enzyme involved in cytokinin(CTK) biosynthesis from Agrobacterium tumefaciens,was selected to generate transgenic cotton via Agrobacterium-mediated transformation.A senescence-inducible SAG12 promoter from Arabidopsis was fused with the IPT gene.Ectopic-expression of SAG12::IPT significantly promoted seed germination or seedling tolerance to salt stress.Two IPTtransgenic lines,OE3 as a tolerant line during seed germination,and OE8 as a tolerant line at seedling stage,were selected for further physiological analysis.The data showed that ectopic-expression of SAG12::IPT induced the accumulation of CTKs not only in leaves and roots,but also in germinating seeds.Moreover,ectopic-expressing IPT increased the activity of antioxidant enzymes,which was associated with the less reactive oxygen species(ROS) accumulation compared with control plants.Also,ectopic-expression of IPT produced higher K^+/Na^+ratio in cotton shoot and root Conclusion:The senescence-induced CTK accumulation in cotton seeds and seedlings positively regulates salt stress partially by elevating ROS scavenging capability.
机译:Background:Soil salinity seriously affects cotton growth,leading to the reduction of yield and fiber quality.Recently,genetic engineering has become an efficient tool to increase abiotic stress tolerance in crops.Results:In this study,isopentyl transferase(IPT),a key enzyme involved in cytokinin(CTK) biosynthesis from Agrobacterium tumefaciens,was selected to generate transgenic cotton via Agrobacterium-mediated transformation.A senescence-inducible SAG12 promoter from Arabidopsis was fused with the IPT gene.Ectopic-expression of SAG12::IPT significantly promoted seed germination or seedling tolerance to salt stress.Two IPTtransgenic lines,OE3 as a tolerant line during seed germination,and OE8 as a tolerant line at seedling stage,were selected for further physiological analysis.The data showed that ectopic-expression of SAG12::IPT induced the accumulation of CTKs not only in leaves and roots,but also in germinating seeds.Moreover,ectopic-expressing IPT increased the activity of antioxidant enzymes,which was associated with the less reactive oxygen species(ROS) accumulation compared with control plants.Also,ectopic-expression of IPT produced higher K~+/Na~+ratio in cotton shoot and root Conclusion:The senescence-induced CTK accumulation in cotton seeds and seedlings positively regulates salt stress partially by elevating ROS scavenging capability.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号