首页> 外文期刊>重庆大学学报(英文版) >Phosphorus transport with runoff of simulated rainfall from purple-soil cropland of different surface conditions
【24h】

Phosphorus transport with runoff of simulated rainfall from purple-soil cropland of different surface conditions

机译:不同地表条件下紫色土农田模拟降雨径流中的磷运移

获取原文
获取原文并翻译 | 示例
           

摘要

We investigated the patterns of phosphorus transport from purple-soil cropland of 5° and 10° slopes with bare and vegetated surfaces,respectively.Each type of land was tested under a simulated moderate rainfall of 0.33 mm/min,a downfall of 0.90 mm/min,and a rainstorm of 1.86 mm/min.Runoff dynamics and changes in the export amount of phosphorus are influenced by the rainfall intensity,the slope and surface conditions of cropland.The vegetation diverts rain water from the surface into soil and helps the formation of a subsurface runoff,but has little influence on runoff process at the same sloping degree.Vegetated soil has a smaller phosphorous loss,particularly much less in the particulate form.A heavier rainfall flushes away more phosphorous.Rainwater percolating soil carries more dissolved phosphorous than particulate phosphorous.Understanding the patterns of phosphorous transport under various conditions from purple soil in the middle of Sichuan basin is helpful for developing countermeasures against non-point-source pollution resulting in the eutrophication of water bodies in this region that could,if not controlled properly,deteriorate the water quality of the Three Gorges Reservoir.
机译:We investigated the patterns of phosphorus transport from purple-soil cropland of 5° and 10° slopes with bare and vegetated surfaces, respectively. Each type of land was tested under a simulated moderate rainfall of 0.33 mm/min, a downfall of 0.90 mm/min, and a rainstorm of 1.86 mm/min. Runoff dynamics and changes in the export amount of phosphorus are influenced by the rainfall intensity, the slope and surface conditions of cropland. The vegetation diverts rain water from the surface into soil and helps the formation of a subsurface runoff, but has little influence on runoff process at the same sloping degree. Vegetated soil has a smaller phosphorous loss, particularly much less in the particulate form. A heavier rainfall flushes away more phosphorous. Rainwater percolating soil carries more dissolved phosphorous than particulate phosphorous. Understanding the patterns of phosphorous transport under various conditions from purple soil in the middle of Sichuan basin is helpful for developing countermeasures against non-point-source pollution resulting in the eutrophication of water bodies in this region that could, if not controlled properly, deteriorate the water quality of the Three Gorges Reservoir.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号