首页> 中文期刊> 《中南大学学报》 >Entire deformational characteristics and strain localization of jointed rock specimen in plane strain compression

Entire deformational characteristics and strain localization of jointed rock specimen in plane strain compression

         

摘要

Shear band (SB), axial, lateral and volumetric strains as well as Poisson’s ratio of anisotropic jointed rock specimen (JRS) were modeled by Fast Lagrangian Analysis of Continua (FLAC). Failure criterion of rock was a composited Mohr-Coulomb criterion with tension cut-off. An inclined joint was treated as square elements of ideal plastic material beyond the peak strength. Several FISH functions were written to automatically find the addresses of elements in the joint and to calculate the entire deformational characteristics of plane strain JRS. The results show that for moderate joint inclination (JI), strain is only concentrated into the joint governing the behavior of JRS, leading to ideal plastic responses in axial and lateral directions. For higher JI, the post-peak stress-axial and lateral strain curves become steeper as JI increases owing to the increase of new SB’s length. Lateral expansion and precursor to the unstable failure are the most apparent, resulting in the highest Poisson’s ratio and even negative volumetric strain. For lower JI, the entire post-peak deformational characteristics are independent of JI. The lowest lateral expansion occurs, leading to the lowest Poisson’s ratio and positive volumetric strain all along. The present prediction on anisotropic strength in plane strain compression qualitatively agrees with the results in triaxial tests of rocks. The JI calculated by Jaeger’s formula overestimates that related to the minimum strength. Advantages of the present numerical model over the Jaeger’s model are pointed out.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号