首页> 中文期刊> 《仿生工程学报(英文版)》 >Bioinspired Musculoskeletal Model-based Soft Wrist Exoskeleton for Stroke Rehabilitation

Bioinspired Musculoskeletal Model-based Soft Wrist Exoskeleton for Stroke Rehabilitation

         

摘要

Exoskeleton robots have demonstrated the potential to rehabilitate stroke dyskinesia.Unfortunately,poor human-machine physiological coupling causes unexpected damage to human of muscles and joints.Moreover,inferior humanoid kinematics control would restrict human natural kinematics.Failing to deal with these problems results in bottlenecks and hinders its application.In this paper,the simplified muscle model and muscle-liked kinematics model were proposed,based on which a soft wrist exoskeleton was established to realize natural human interaction.Firstly,we simplified the redundant muscular system related to the wrist joint from ten muscles to four,so as to realize the human-robot physiological coupling.Then,according to the above human-like musculoskeletal model,the humanoid distributed kinematics control was established to achieve the two DOFs coupling kinematics of the wrist.The results show that the wearer of an exoskeleton could reduce muscle activation and joint force by 43.3% and 35.6%,respectively.Additionally,the humanoid motion trajectories similarity of the robot reached 91.5%.Stroke patients could recover 90.3% of natural motion ability to satisfy for most daily activities.This work provides a fundamental understanding on human-machine physiological coupling and humanoid kinematics control of the exoskeleton robots for reducing the post-stroke complications.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号