首页> 外文期刊>仿生工程学报(英文版) >Design and Implementation of Paired Pectoral Fins Locomotion of Labriform Fish Applied to a Fish Robot
【24h】

Design and Implementation of Paired Pectoral Fins Locomotion of Labriform Fish Applied to a Fish Robot

机译:应用于鱼类机器人的唇形鱼成对扇形鳍运动设计与实现

获取原文
获取原文并翻译 | 示例
       

摘要

In present, there are increasing interests in the research on mechanical and control system of underwater vehicles. These ongoing research efforts are motivated by more pervasive applications of such vehicles including seabed oil and gas explorations, scientific deep ocean surveys, military purposes, ecological and water environmental studies, and also entertainments.However, the performance of underwater vehicles with screw type propellers is not prospective in terms of its efficiency and maneuverability. The main weaknesses of this kind of propellers are the production of vortices and sudden generation of thrust forces which make the control of the position and motion difficult.On the other hand, fishes and other aquatic animals are efficient swimmers, posses high maneuverability, are able to follow trajectories, can efficiently stabilize themselves in currents and surges, create less wakes than currently used underwater vehicle,and also have a noiseless propulsion. The fish's locomotion mechanism is mainly controlled by its caudal fin and paired pectoral fins. They are classified into Body and/or Caudal Fin (BCF) and Median and/or paired Pectoral Fins (MPF). The study of highly efficient swimming mechanisms of fish can inspire a better underwater vehicles thruster design and its mechanism.There are few studies on underwater vehicles or fish robots using paired pectoral fins as thruster. The work presented in this paper represents a contribution in this area covering study, design and implementation of locomotion mechanisms of paired pectoral fins in a fish robot. The performance and viability of the biomimetic method for underwater vehicles are highlighted through in-water experiment of a robotic fish.
机译:目前,对水下航行器的机械和控制系统的研究越来越受到关注。这些正在进行的研究工作是由此类车辆的更广泛应用推动的,包括海底油气勘探,科学深海调查,军事目的,生态和水环境研究以及娱乐活动。就其效率和可操作性而言,不是预期的。这种螺旋桨的主要缺点是产生涡流和突然产生推力,这使得对位置和运动的控制变得困难。另一方面,鱼类和其他水生动物是高效的游泳者,具有很高的机动性,能够跟随轨迹,可以有效地使自己稳定在潮流和浪涌中,比目前使用的水下航行器产生更少的尾流,并且具有无噪音的推进力。鱼的运动机制主要受其尾鳍和成对的胸鳍控制。它们分为身体鳍和/或尾鳍(BCF)和中鳍和/或成对的鳍(MPF)。对鱼类高效游泳机制的研究可以启发水下机器人更好的推进器设计及其机理。很少有以成对的胸鳍作为推进器的水下机器人或鱼类机器人的研究。本文提出的工作代表了该领域的一项贡献,涵盖了鱼类机器人中成对的胸鳍运动机制的研究,设计和实现。通过机器人鱼的水中实验突出了用于水下航行器的仿生方法的性能和可行性。

著录项

  • 来源
    《仿生工程学报(英文版)》 |2009年第1期|37-45|共9页
  • 作者单位

    Department of Engineering Physics, Bandung Institute of Technology, Bandung 40132, Indonesia;

    Department of Engineering Physics, Bandung Institute of Technology, Bandung 40132, Indonesia;

    Department of Engineering Physics, Bandung Institute of Technology, Bandung 40132, Indonesia;

    Smart Robot Center, Department of Aerospace Engineering, Konkuk University, Seoul 143-701, Korea;

  • 收录信息 中国科学引文数据库(CSCD);
  • 原文格式 PDF
  • 正文语种 chi
  • 中图分类 生物工程学(生物技术);
  • 关键词

  • 入库时间 2022-08-19 03:59:47
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号