首页> 中文期刊> 《仿生工程学报(英文版)》 >Fuzzy Vorticity Control of a Biomimetic Robotic Fish Using a Flapping Lunate Tail

Fuzzy Vorticity Control of a Biomimetic Robotic Fish Using a Flapping Lunate Tail

         

摘要

Vorticity control mechanisms for flapping foils play a guiding role in both biomimetic thrust research and modeling the forward locomotion of animals with wings, fins, or tails. In this paper, a thrust-producing flapping lunate tail is studied through force and power measurements in a water channel. Proper vorticity control methods for flapping tails are discussed based on the vorticity control parameters: the dimensionless transverse amplitude, Strouhal number, angle of attack, and phase angle. Field tests are conducted on a free-swimming biomimetic robotic fish that uses a flapping tail. The results show that active control of Strouhal number using fuzzy logic control methods can efficiently reduce power consumption of the robotic fish and high swimming speeds can be obtained. A maximum speed of 1.17 length specific speed is obtained experimentally under conditions of optimal vorticity control. The St of the flapping tail is controlled within the range of 0.4~0.5.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号