首页> 中文期刊> 《空军工程大学学报》 >改进YOLOv5的钢材表面缺陷检测算法

改进YOLOv5的钢材表面缺陷检测算法

         

摘要

针对传统钢材表面缺陷检测方法存在检测效率低、检测精度差等问题,提出一种基于改进YOLOv5的钢材表面缺陷检测算法。首先使用GhostBottleneck结构替换原YOLOv5网络中的C3模块和部分卷积结构,实现网络模型轻量化;其次在Backbone部分引入SE注意力机制,对重要的特征通道进行强化;最后针对数据集特点在网络中增加一个检测层,强化特征提取能力,并在Neck部分增加特征融合结构,使用DW卷积替换部分标准卷积以减少运算量。实验表明,改进的YOLOv5s-GSD算法,模型体积减少了10.4%,在测试集上的mAP值为76.8%,相比原YOLOv5s网络提高了3.3%,检测精度和速度也明显高于一些主流算法。相比传统的钢材表面缺陷检测方法,提出的算法能够更加准确、快速地检测出钢材表面缺陷的种类和位置,并且具有较小的模型体积,方便于在移动端的部署。

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号