首页> 中文期刊> 《农业科学学报:英文版》 >Comparison and analysis of QTLs for grain and hull thickness related traits in two recombinant inbred line (RIL) populations in rice ( Oryza sativa L.)

Comparison and analysis of QTLs for grain and hull thickness related traits in two recombinant inbred line (RIL) populations in rice ( Oryza sativa L.)

         

摘要

cqvip:Grain traits are major constraints in rice production, which are key factors in determining grain yield and market values. This study used two recombinant inbred line(RIL) populations, RIL-JJ(japonica/japonica) and RIL-IJ(indica/japonica) derived from the two crosses Shennong 265/Lijiangxintuanheigu(SN265/LTH) and Shennong 265/Luhui 99(SN265/LH99). Sixty-eight quantitative trait loci(QTLs) associated with 10 grain traits were consistently detected on the 12 chromosomes across different populations and two environments. Although 61.75% of the QTLs clustered together across two populations, only 16.17% could be detected across two populations. Eight major QTLs were detected on the 9, 10 and 12 chromosomes in RIL-JJ under two environments, a novel QTL clustered on the 10 chromosome, q GT10, q BT10 and q TGW10, have a higher percentage of explained phenotypic variation(PVE) and additive effect; 15 major QTLs were detected on the 5, 8, 9, and 11 chromosomes in RIL-IJ under two environments, a novel clustered QTL, q GT8 and q TGW8, on the 8 chromosome have a higher additive effect. Finally, the analysis of major QTL-BSA mapping narrowed the q TGW10 to a 1.47-Mb region flanked by simple sequence repeat markers RM467 and RM6368 on chromosome 10. A comparison of QTLs for grain traits in two different genetic backgrounds recombinant inbred line populations confirmed that genetic background had a significant impact on grain traits. The identified QTLs were stable across different populations and various environments, and 29.42% of QTLs controlling grain traits were reliably detected in different environments. Fewer QTLs were detected for brown rice traits than for paddy rice traits, 7 and 17 QTLs for brown rice out of 25 and 43 QTLs under RIL-JJ and RILIJ populations, respectively. The identification of genes constituting the QTLs will help to further our understanding of the molecular mechanisms underlying grain shape.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号