首页> 中文期刊> 《国际水土保持研究(英文) 》 >Dynamic study of infiltration rate for soils with varying degrees of degradation by water erosion

Dynamic study of infiltration rate for soils with varying degrees of degradation by water erosion

         

摘要

Ultisols,widely distributed in tropical and subtropical areas of south China,are suffering from serious water erosion,however,slope hydrological process for Ultisols under different erosional degradation levels in field condition has been scarcely investigated.Field rainfall simulation at two rainfall intensities (120 and 60 mm/h) were performed on pre-wetted Ultisols with four erosion degrees (non,moderate,severe and very-severe),and the hydrological processes of these soils were determined.The variation of soil infiltration was contributed by the interaction of erosion degree and rainfall intensity (p < 0.05).In most cases,time to incipient runoff,the decay coefficient,steady state infiltration rate,and their variability were larger at the high rainfall intensity,accelerating by the increasing erosion severity.Despite rainfall intensity,the infiltration process of Ultisols was also significantly influenced by mean weight diameter of aggregates at the field moisture content,soil organic carbon and particle size distribution (R2 > 30%,p < 0.05).The temporal erodibility of surface soil and soil detachment rate were significantly and negatively correlated with infiltration rate (r <-0.32,p < 0.05),but less significant correlation was observed between sediment concentration and infiltration rate for most soils,especially at the high rainfall intensity.The variation of surface texture and soil compactness generated by erosion degradation was the intrinsic predominant factors for the change of infiltration process of Ultisols.The obtained results will facilitate the understanding of hydrological process for degraded lands,and provide useful knowledge in managing crop irrigation and soil erosion.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号