首页> 中文期刊> 《矿业科学技术(英文版)》 >Application and comparison of RNN, RBFNN and MNLR approaches on prediction of flotation column performance

Application and comparison of RNN, RBFNN and MNLR approaches on prediction of flotation column performance

         

摘要

Evaluation of grade and recovery plays an important role in process control and plant profitability in mineral processing operations, especially flotation. The accurate measurement or estimation of these two parameters, based on the secondary variables, is a critical issue. Data-driven modeling techniques, which entail comprehensive data analysis and implementation of machine learning methods for system forecast, provide an attractive alternative. In this paper, two types of artificial neural networks(ANNs),namely radial basis function neural network(RBFNN) and layer recurrent neural network(RNN), and also a multivariate nonlinear regression(MNLR) model were employed to predict metallurgical performance of the flotation column. The training capacity and the accuracy of these three above mentioned types of models were compared. In order to acquire data for the simulation, a case study was conducted at Sarcheshmeh copper complex pilot plant. Based on the root mean squared error and correlation coefficient values, at training and testing stages, the RNN forecasted the metallurgical performance of the flotation column better than RBF and MNLR models. The RNN could predict Cu grade and recovery with correlation coefficients of 0.92 and 0.9, respectively in testing process.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号