首页> 外文期刊>矿业科学技术学报:英文版 >A numerical simulation of the influence initial temperature has on the propagation characteristics of, and safe distance from, a gas explosion
【24h】

A numerical simulation of the influence initial temperature has on the propagation characteristics of, and safe distance from, a gas explosion

机译:初始温度对气体爆炸传播特性和安全距离的影响的数值模拟

获取原文
获取原文并翻译 | 示例
       

摘要

A model roadway with a cross-sectional area of 80 mm 80 mm and a length of 100 m was used to estimate the overpressure, the temperature, the density, and the combustion rate during an explosion. Auto-ReaGas software was used for the calculations and the initial temperatures were 248, 268, 308, or 328 K. The methaneair mixture had a fuel concentration of 9.5% and the tunnel had a filling ratio of 10%. The results show that the safe distance necessary to avoid harm from the shock wave increases with increasing initial temperature. The distance where the peak overpressure begins to rise, and where the maximum value occurs, increases as the initial temperature increases. These are almost linear functions of the initial temperature. At locations before shock wave attenuation has occurred increasing the initial temperature linearly increases the maximum temperature at each point following along the tunnel. At the same time, the peak overpressure, the maximum density, and the maximum combustion rate decrease linearly. How-ever, after the shock wave has attenuated the attenuation extent of the peak overpressure decreases with an increase in initial temperature. The influence of the initial temperature on the explosion propagation depends on the combined effects of inhibiting and enhancing factors. The research results can provide a theoretical guidance for gas explosion disaster relief and treatment in underground coal mines.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号