首页> 中文期刊> 《自动化学报:英文版》 >Adaptive Robust Control for a Lower Limbs Rehabilitation Robot Running Under Passive Training Mode

Adaptive Robust Control for a Lower Limbs Rehabilitation Robot Running Under Passive Training Mode

         

摘要

This paper focuses on the problem of the adaptive robust control of a lower limbs rehabilitation robot(LLRR) that is a nonlinear system running under passive training mode. In reality, uncertainties including modeling error, initial condition deviation, friction force and other unknown external disturbances always exist in a LLRR system. So, it is necessary to consider the uncertainties in the unilateral man-machine dynamical model of the LLRR we described. In the dynamical model, uncertainties are(possibly fast) time-varying and bounded. However, the bounds are unknown. Based on the dynamical model, we design an adaptive robust control with an adaptive law that is leakagetype based and on the framework of Udwadia-Kalaba theory to compensate for the uncertainties and to realize tracking control of the LLRR. Furthermore, the effectiveness of designed control is shown with numerical simulations.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号