首页> 外文期刊>摩擦(英文版) >Molecular behaviors in thin film lubrication——Part one: Film formation for different polarities of molecules
【24h】

Molecular behaviors in thin film lubrication——Part one: Film formation for different polarities of molecules

机译:薄膜润滑中的分子行为-第一部分:不同极性分子的成膜

获取原文
获取原文并翻译 | 示例
           
机译:There are three unsolved problems in thin film lubrication(TFL) since it was proposed 20 years ago, i.e., the determination of the type of molecules that can enter the contact region efficiently during sliding, the orientation of molecules in the contact region, and the effect of solid surfaces on the liquid molecular orientation in TFL. In order to answer the first two questions, an in situ measurement system comprising a self-designed Raman microscopy and relative optical interference intensity(ROⅡ) system was set up to study the molecular behaviors. A variety of binary mixtures were used as lubricants in the test, and the concentration distribution profile and orientation of the additive molecules in TFL were characterized. The molecular behavior was determined via a combination of shearing, confinement, and surface adsorption. Furthermore, the difference in molecular polarity resulted in different competing effect of surface adsorption and intermolecular interaction, the influence of which on molecular behavior was discussed. Polar additive molecules interacted with the steel surface and exhibited an enrichment effect in the Hertz contact region when added into a nonpolar base oil. No enrichment effect was observed for nonpolar molecules that were added into the nonpolar base oil and polar molecules added into polar base oil. The enrichment of additive molecules enhanced the film-forming ability of the lubricant and resulted in a reduction in the friction coefficient of up to 61%. The orderly arrangement of the additive molecules was another reason for the friction-reducing. A binary multilayer model was proposed to illuminate the molecular behavior in the TFL, and the model was supported by contrary experiment results in elastohydrodynamic lubrication. This research may aid in understanding the nanoscale lubrication mechanism in TFL and the development of novel liquid lubricants.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号