首页> 中文期刊> 《电子科技学刊:英文版》 >Casimir Effect in Optoelectronic Devices Using Ferrofluids

Casimir Effect in Optoelectronic Devices Using Ferrofluids

         

摘要

cqvip:Some of the modern electronic and optoelectronic devices exploit ferrofluids contained in narrow gaps between two material plates. When the width of the gap becomes below a micrometer, the boundary plates are subjected to the Casimir force arising from the zero-point and thermal fluctuations of the electromagnetic field. These forces should be taken into account in microdevices with the dimensions decreased to below a micrometer. In this paper, we review recently performed calculations of the attractive Casimir pressure in three-layer systems containing a ferrofluid. We also find the ferrofluidic system where the Casimir pressure is repulsive. This result is obtained in the framework of the fundamental Lifshitz theory of van der Waals and Casimir forces. The conclusion is made that enhanced repulsion due to the presence of a ferrofluid may prevent from sticking of closely spaced elements of a microdevice.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号