首页> 中文期刊>地学前缘 >CENOZOIC DISPLACEMENT HISTORY OF THE ALTYN TAGH FAULT:GEOLOGICAL EVIDENCE FROM FIELD OBSERVATIONS IN SOUERKULI AND MANGAR REGIONS, NW CHINA

CENOZOIC DISPLACEMENT HISTORY OF THE ALTYN TAGH FAULT:GEOLOGICAL EVIDENCE FROM FIELD OBSERVATIONS IN SOUERKULI AND MANGAR REGIONS, NW CHINA

     

摘要

The ENE|striking Altyn Tagh Fault (ATF) has been well known as a large, active left|lateral strike|slip fault that bounds the thrusting systems in NE Tibet.This fault has been the focal point in the debate between the discrete extrusion vs. distributed crustal shortening models. Although its active left|lateralstrike|slip features have been largely investigated and well documented by both satellite imagery and air|photo interpretations and field observations, little study has been done upon its Cenozoic displacement history. Questions about the age of initiation and total offset accumulated on the fault remain controversial. A key area to resolve such question is located along the central segment of the fault in the Souerkuli and Mangar regions, where Neogene sedimentary basins well develop and are mostly distributed in three zones, namely from east to west: the Gobiling, Yitunbulak and Yusuale Tagh (Fig.1). Our field investigations were conducted along the ATF cutting the Yitunbulak and Gebiling Neogene sedimentary basins. Two stratigraphic unconformities observed within this Neogene conglomeratic series allow a separation of three major stratigraphic sequences and record the initiation and major deformational episodes of ATF during Cenozoic. An early stratigraphic unconformity occurred between a yellow depositional series below and early Pliocene red|colored conglomeratic mudstones above. A later stratigraphic unconformities occurred between early and late Pliocene sedimentary series. The lower series below the early stratigraphic unconformities is mainly composed of a conglomeratic rocks containing cobbles and pebbles of basement rock units (mostly mylonitic granites, limestones and quartzes); this series has been poorly mapped and dated; its age could be assigned to late Oligocene to early Miocene; this series tilts to NW with an angle of about 30° and is overlain in angular unconformity by early Pliocene pebble|sized conglomerates. A weathering zone on top of the lower conglomeratic series is clearly seen, that represents a long period of uplift and erosion. This lacuna occurred between early Miocene and early Pliocene in the west Qaidam basin, which has been documented only locally. Early Pliocene deposits correspond to alluvial to lacustrine facies rocks deposited in strike|slip basin probably originated at releasing bend of the strike|slip ATF; late Pliocene deposits is composed by fluviatile conglomerates and fanglomerates lying in unconformity on the upper Pliocene rocks. Early Quaternary deposits are absent along the ATF and have been well documented in the Qaidam basin. Late Quaternary fanglomerates infills active fault valleys.
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号