首页> 中文期刊> 《能源与环境材料(英文) 》 >Identifying Hidden Li–Si–O Phases for Lithium-Ion Batteries via First-Principle Thermodynamic Calculations

Identifying Hidden Li–Si–O Phases for Lithium-Ion Batteries via First-Principle Thermodynamic Calculations

             

摘要

SiO–based materials are promising alloys and conversion-type anode materials for lithium-ion batteries and are recently found to be excellent dendrite-proof layers for lithium-metal batteries.However,only a small fraction of the Li–Si–O compositional space has been reported,significantly impeding the understanding of the phase transition mechanisms and the rational design of these materials both as anodes and as protection layers for lithium-metal anodes.Herein,we identify three new thermodynamically stable phases within the Li–Si–O ternary system(Li_(2)SiO_(5),Li_(4)SiO_(6),and Li_(4)SiO_(8))in addition to the existing records via first-principle calculations.The electronic structure simulation shows that Li_(2)SiO_(5)and Li_(4)SiO_(8)phases are metallic in nature,ensuring high electronic conductivity required as electrodes.Moduli calculations demonstrate that the mechanical strength of Li–Si–O phases is much higher than that of lithium metal.The diffusion barriers of interstitial Li range from 0.1 to 0.6 eV and the interstitial Li hopping serves as the dominating diffusion mechanism in the Li–Si–O ternary systems compared with vacancy diffusion.These findings provide a new strategy for future discovery of improved alloying anodes for lithium-ion batteries and offer important insight towards the understanding of the phase transformation mechanism of alloy-type protection layers on lithium-metal anodes.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号