首页> 中文期刊> 《工程与科学中的计算机建模(英文)》 >Bioconvection Cross Diffusion Effects on MHD Flow of Nanofluids over Three Different Geometries with Melting

Bioconvection Cross Diffusion Effects on MHD Flow of Nanofluids over Three Different Geometries with Melting

         

摘要

Currently,nanofluid is a hot area of interest for researchers.The nanofluid with bioconvection phenomenon attracted the researchers owing to its numerous applications in the field of nanotechnology,microbiology,nuclear science,heat storage devices,biosensors,biotechnology,hydrogen bomb,engine of motors,cancer treatment,the atomic reactor,cooling of devices,and in many more.This article presents the bioconvection cross-diffusion effects on the magnetohydrodynamic flow of nanofluids on three different geometries(cone,wedge,and plate)with mixed convection.The temperature-dependent thermal conductivity,thermal diffusivity,and Arrhenius activation energy applications are considered on the fluid flow with melting phenomenon.The flow is analyzed under thermal and solutal Robin’s conditions.The problem is formulated in the mathematical formulation of partial differential equations(PDEs).The similarity transformations are applied to diminish the governing nonlinear coupled boundary value problems into higher-order non-linear ordinary differential equations(ODEs).The resulting expressions/equation numerically tackled utilizing the famous bvp4c package by MATLAB for various interesting parameters.The results were physically and numerically calculated through graphics and tables for the velocity field,energy distribution,nanoparticles concentration,and microorganisms profile for numerous parameters.From the obtained results,we discern that the transfer of heat and mass coefficient is high over a plate and cone in the flow,respectively.The velocity profile is reduced via a larger magnetic parameter.Temperaturedependent thermal conductivity enhances the thermal field.Larger thermophoresis enhanced the concentration of nanoparticles.The microorganisms’Biot number boosts the microorganism’s profile.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号