首页> 中文期刊> 《生物科学与医学(英文) 》 >A Totally Absorbable Multilayer PLGA Implant Device Containing Doxorubicin Inhibited Tumor Growth and Metastasis without Systemic Toxicity in Murine Breast Cancer and an Ideal Pharmacological Paradigm for Regional Chemotherapy

A Totally Absorbable Multilayer PLGA Implant Device Containing Doxorubicin Inhibited Tumor Growth and Metastasis without Systemic Toxicity in Murine Breast Cancer and an Ideal Pharmacological Paradigm for Regional Chemotherapy

             

摘要

We hypothesize that a cylinder implant made of multilayer Poly-lactic-co-glycolic-acid (PLGA) membrane can be a method for controlled and extended drug release. We fashioned a multilayer cylindrical implant termed STID100 that released doxorubicin for 3 weeks in an orthotopic 4T1 breast cancer model in Balb/C mice. This implant starts as a thin doxorubicin-embedded PLGA membrane, and is then rolled into a cylinder containing an air gap between the membrane layers. Its controlled sustained release delivered 2× the amount of the intravenous (IV) equivalent of doxorubicin, inhibited the primary tumor, and prevented lung metastasis. Importantly it did not cause weight loss, splenomegaly, or cardiac toxicity vs systemically administrated doxorubicin. This favorable safety profile is further substantiated by the finding of no detectable plasma doxorubicin in multiple time points during the 3-week period, and low tumor doxorubicin concentration. The implant system delivered to the specification of an ideal pharmacological paradigm might offer a better coverage of the local tumor, significantly preventing metastatic spread with less drug toxicity to many vital organs, compared to the traditional pharmacology of IV route. The profile of STID made it an attractive therapeutic alternative in metastatic tumor prevention, pain management and many other diverse clinical scenarios.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号