首页> 中文期刊> 《中国通信:英文版》 >Delay-Optimal Random Access in Large-Scale Energy Harvesting IoT Networks Based on Mean Field Game

Delay-Optimal Random Access in Large-Scale Energy Harvesting IoT Networks Based on Mean Field Game

             

摘要

With energy harvesting capability, the Internet of things(IoT) devices transmit data depending on their available energy, which leads to a more complicated coupling and brings new technical challenges to delay optimization. In this paper,we study the delay-optimal random access(RA) in large-scale energy harvesting IoT networks. We model a two-dimensional Markov decision process(MDP)to address the coupling between the data and energy queues, and adopt the mean field game(MFG) theory to reveal the coupling among the devices by utilizing the large-scale property. Specifically, to obtain the optimal access strategy for each device, we derive the Hamilton-Jacobi-Bellman(HJB) equation which requires the statistical information of other devices.Moreover, to model the evolution of the states distribution in the system, we derive the Fokker-PlanckKolmogorov(FPK) equation based on the access strategy of devices. By solving the two coupled equations,we obtain the delay-optimal random access solution in an iterative manner with Lax-Friedrichs method. Finally, the simulation results show that the proposed scheme achieves significant performance gain compared with the conventional schemes.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号