首页> 中文期刊>生物医学工程(英文) >Microtubule Biomechanical Properties under Deformation and Vibration

Microtubule Biomechanical Properties under Deformation and Vibration

     

摘要

Microtubules (MT) are of great engineering importance due to their potential applications as sensors, actuators, drug delivery, and others. The MT properties/mechanics are greatly affected by their biomechanical environment and it is important to understand their biological function. Although microtubule mechanics has been extensively studied statically, very limited studies are devoted to the biomechanical properties of microtubule undergoing deformation and vibration. In this study, we investigate the biomechanical properties of the microtubule under bending deformation and free vibration using 3D finite element analysis. Results of force-deformation and vibration frequencies and mode shapes obtained from the finite element analysis are presented. The results indicate that the force-deformation characteristics vary with time/phases and become non-linear at higher time intervals. The modes of MT vibration and frequencies are in the GHz range and higher modes will involve combined bending, torsion and axial deformations. These higher modes and shapes change their deformation which might have implications for physiological and biological behavior, especially for sensing and actuation and communication to cells. The bending force-deformation characteristics and vibration modes and frequencies should help further understand the biomechanical properties of self-assembled microtubules.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号