首页> 中文期刊>封装与吸附期刊(英文) >On Single Compartment Pharmacokinetic Model Systems that Obey Michaelis-Menten Kinetics and Systems that Obey Krebs Cycle Kinetics

On Single Compartment Pharmacokinetic Model Systems that Obey Michaelis-Menten Kinetics and Systems that Obey Krebs Cycle Kinetics

     

摘要

The integration of Michaelis-Menten kinetics results in a trancedental equation. The results are not in a form that is readily usable. A more usable form of the model solutions is developed. This was accomplished by using Taylor series expansion of dimensionless concentration u in terms of its derivatives. The infinite series expression for dimensionless concentration is given. It can be seen that for times t < , the Taylor series expression evaluated near the origin up to the third derivative is a reasonable representation of the integrated solution. More terms in the Taylor series expression can be added to suit the application. It can vary with the apparent volume, dosage, enzyme concentration, Michaelis constant and the desired accuracy level needed. The single compartment model solution was obtained by the method of Laplace transform. It can be seen from Figure 2 that the dimensionless drug concentration in the compartment goes through a maxima. The curve is convex throughout the absorption and elimination processes. The drug gets completely depleted after a said time. The curve is asymmetrical with a right skew. The systems under absorption with elimination that obey the kinetics that can be represented by a set of reactions in circle were considered. A system of simple reactions in circle was taken into account. The concentration profile of the reactants were obtained by the method of Laplace transforms. The conditions when subcritical damped oscillations can be expected are derived. A model was developed for cases when absorption kinetics exhibit subcritical damped oscillations. The solution was developed by the method of Laplace transforms. The solution for dimensionless concentration of the drug in single compartment for different values of rate constants and dimensionless frequency are shown in Figures 6-9. The drug profile reaches a maximum and drops to zero concen-tration after a said time. The fluctuations in concentration depends on the dimensionless frequency resulting from the subcritical damped oscillations during absorption. At low frequencies the fluctuations are absent. As the frequency is increased the fluctuations in concentration are pronounced. The fre-quency of fluctuations were found to increase with increase in frequency of oscillations during ab-sorption.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号