首页> 中文期刊> 《细胞生物学(英文)》 >Optimized Conditions for the Delivery of Small Membrane Impermeable Compounds into Human Cells Using Hypotonic Shift

Optimized Conditions for the Delivery of Small Membrane Impermeable Compounds into Human Cells Using Hypotonic Shift

         

摘要

Cell-based assays represent a major end point of high throughput screening (HTS) but a key limitation of such assays is the potentially poor membrane permeability of test compounds. In this study, we optimized the conditions for the delivery of the membrane impermeable compound 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) into human cells using hypotonic shift;a method that can promote the uptake of molecules from the extracellular fluid into cell cytoplasm via endocytosis. We showed that uptake of HPTS by cells was a function of hypotonic buffer osmolarity and that delivery was highly efficient with almost 100% of cells displaying uptake. Delivery of HPTS was equally effective at 25°C and 37°C, with delivery of compound proportional to incubation time and concentration of HPTS within the loading medium. The experimental conditions identified in this study could be applied to HTS drug discovery studies providing an effective method of delivering small membrane impermeable compounds into cells.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号