首页> 中文期刊> 《应用数学(英文) 》 >Evaluation of Kinetic Properties of Dendritic Potassium Current in Ghostbursting Model of Electrosensory Neurons

Evaluation of Kinetic Properties of Dendritic Potassium Current in Ghostbursting Model of Electrosensory Neurons

             

摘要

A ghostbursting model is a mathematical model (a system of coupled nonlinear ordinary differential equations) that is based on the Hodgkin-Huxley formalism. The ghostbursting model describes bursting similar to the in vitro bursting of electrosensory neurons of weakly electric fish. Doiron and coworkers have focused on two system parameters of the model: maximal conductance of the dendritic potassium current and the current injected into the somatic compartment . They performed bifurcation analysis and revealed that the -parameter space was divided into three dynamical states: quiescence, periodic tonic spiking, and bursting. The present study focused on a third system parameter: the time constant of dendritic potassium current inactivation . A computer simulation of the model revealed how the dynamical states of the -parameter space changed in response to variations of .

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号