首页> 中文期刊> 《微生物学(英文)》 >Analysis of Trends in Resistance to Fluoroquinolones and Extended Spectrum Beta-Lactams among iSalmonella/iTyphi Isolates Obtained from Patients at Four Outpatient Clinics in Nairobi County, Kenya

Analysis of Trends in Resistance to Fluoroquinolones and Extended Spectrum Beta-Lactams among iSalmonella/iTyphi Isolates Obtained from Patients at Four Outpatient Clinics in Nairobi County, Kenya

         

摘要

Typhoid fever caused by the bacterium Salmonella enterica serovar Typhi (S. Typhi) causes an estimated 25 million illnesses and approximately 200,000 deaths annually mostly in developing countries. Although the management of typhoid fever has been effectively through antibiotic treatment, S. Typhi is increasingly becoming resistant to the currently recommended drugs. This study utilized a quasi-experimental design focusing on archived samples to describe antimicrobial susceptibility patterns of S. Typhi and determine the genetic basis of resistance to the two most commonly used classes of antimicrobials. A total sample size of 287 isolates of S. Typhi isolates stored in -80°C freezer at the Centre for Microbiology Research was utilized. Isolates were subjected to anti-microbial susceptibility testing to commonly available antimicrobials using disk diffusion method, then analyzed for trends in resistance to fluoroquinolones and extended spectrum beta lactams. Among the 287 isolates 158 (55.5%) were found to be Multi Drug Resistant (MDR). This implied that these isolates were resistant to all first line classes of treatment such as ampicillin, chloramphenicol and sulfamethoxazole-trimethroprim. In addition to this, these isolates were also resistant to at least one of the currently recommended drugs of choice, either a β-lactam or a fluoroquinolone. This study observed resistances at 18.2% and 15.4% to fluoroquinolones and cephalosporins respectively. PCR results revealed presence of blaTEM, blaINT and blaCTX-M genes coding for resistance to β-lactams in 80% of the isolates that had combined resistance to β-lactams and fluoroquinolones. It is likely that recent heavy use of these classes of antimicrobials is driving resistances to these antimicrobials.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号