首页> 中文期刊> 《世界生物化学杂志:英文版(电子版)》 >Rethinking quasispecies theory: From fittest type to cooperative consortia

Rethinking quasispecies theory: From fittest type to cooperative consortia

         

摘要

Recent investigations surprisingly indicate that single RNA "stem-loops" operate solely by chemical laws that act without selective forces, and in contrast, self-ligated consortia of RNA stem-loops operate by biological selection. To understand consortial RNA selection, the concept of single quasi-species and its mutant spectra as drivers of RNA variation and evolution is rethought here. Instead, we evaluate the current RNA world scenario in which consortia of cooperating RNA stem-loops(not individuals) are the basic players. We thus redefine quasispecies as RNA quasispecies consortia(qs-c) and argue that it has essential behavioral motifs that are relevant to the inherent variation, evolution and diversity in biology. We propose that qs-c is an especially innovative force. We apply qs-c thinking to RNA stem-loops and evaluate how it yields altered bulges and loops in the stem-loop regions, not as errors, but as a natural capability to generate diversity. This basic competencenot error-opens a variety of combinatorial possibilities which may alter and create new biological interactions, identities and newly emerged self identity(immunity) functions. Thus RNA stem-loops typically operate as cooperative modules, like members of social groups. Fromsuch qs-c of stem-loop groups we can trace a variety of RNA secondary structures such as ribozymes, viroids, viruses, mobile genetic elements as abundant infection derived agents that provide the stem-loop societies of small and long non-coding RNAs.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号