首页> 中文期刊> 《纳米科学与工程(英文)》 >Measurements of Pulsed 532 nm Laser Breakdown Spectroscopy of Synthesized Magnetite Nanoferrofluid

Measurements of Pulsed 532 nm Laser Breakdown Spectroscopy of Synthesized Magnetite Nanoferrofluid

         

摘要

We describe the results of 532 nm pulse laser-induced breakdown spectroscopy (LIBS) of two samples of magnetite nanoparticles (SPIONs) nanoferrofluid synthesized at room (S1) and elevated temperatures (S2) and at three different laser energy levels and pulse frequency. The size of magnetite nanoparticles, size distribution, magnetic crystalline phase and magnetization were analyzed and measured using transmission electron microscopy (TEM), X-ray diffraction spectroscopy (XRD) and vibrating sample magnetometry (VSM). The SPIONs showed a distribution between 4 - 22 nm with a peak about 12 nm and saturation magnetization of about 65 emu/g. The Saha-Boltzmann analysis of spectra for medium energy level (1050 mJ) yields plasma temperatures of (3881 ± 200) K and (26,047 ± 200) K for Fe I and OV as the lowest and highest temperatures respectively. A range of corresponding electron density (Ne-) of (0.47 - 6.80) × 1020, (0.58 - 8.30) × 1020 and (0.69 - 9.96) × 1020 cm-3?were determined at 860, 1050 and 1260 mJ respectively using the estimated CCD pictures. The results confirmed a higher elements ratio for S1 than S2 and the signal intensity indicated a non-linear behaviour as a function of pulse frequency with the maximum ratio value at 3 Hz. At higher frequency of 6 Hz no such turning point was observed. The highest and lowest temperatures corresponded to Fe I and OV respectively. The LIBS technique can be utilized to study, characterize and determine the elements ratio required in most applications involving the synthesizing process.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号