首页> 中文期刊> 《生物化学进展(英文)》 >Mitochondrial Membranes Restitution Proceeds via Vesicular Import from ER and Cytosol. Counterparts’ Resemblances and Variances in Mitochondria and Golgi Pathways

Mitochondrial Membranes Restitution Proceeds via Vesicular Import from ER and Cytosol. Counterparts’ Resemblances and Variances in Mitochondria and Golgi Pathways

         

摘要

The processes of mitochondrial restitution are controlled by nuclear genes that encode proteins synthesized in ER and cytosol and delivered as organelle- and membrane-specific transport vesicles. The analysis of the transporters recovered from inner mitochondrial space (Mitosol) revealed that the ER-synthesized mitochondria-specific transport vesicles consist of two carriers, one remaining in outer mitochondrial membrane (OMM), and the other that transfers specific membrane segments to the inner mitochondrial membrane (IMM). The ER-assembled and IMM-committed membrane segments, while first integrated into OMM, undergo intra-mitochondrial lipid modification reflected in the synthesis of cardiolipin (CL) and inversion into Mitosol with load of IMM associated cytosolic proteins. Then, the CL-bedecked vesicles are released from OMM to Mitosol and upon contact with IMM fuse with the membrane, and the release of cytosolic cargo ensues. While ER-assembled mitochondria-specific transport vesicles fuse with OMM with the aid of the cytosolic, phosphatidylglycerol (PG)-specific phospholipase A2 (PLA2), the Mitosol-contained CL-specific PLA guides vesicles fusion with IMM. The described path of translocation of the membrane segments and the cytosol synthesized proteins into the designated mitochondrial compartments sustains growth and identity of OMM, IMM, maintains protein delivery for intra-mitochondrial lipid and protein modification in Mitosol, and ensures conformity of the cytosolic proteins cargo delivered to matrix.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号