首页> 中文期刊> 《天文和天体物理学研究:英文版》 >AstroSat observation of GX 5–1: spectral and timing evolution

AstroSat observation of GX 5–1: spectral and timing evolution

         

摘要

We report on the first analysis of an AstroSat observation of the Z-source GX 5–1 on 2017 February 26-27. The hardness-intensity plot reveals that the source traced out the horizontal and normal branches. The 0.8-20 keV spectra from simultaneous SXT and LAXPC data at different locations of the hardness-intensity plot can be described well by disk emission and a thermal Comptonized component. The ratio of the disk flux to the total flux, i.e., the disk flux ratio, increases monotonically along the horizontal branch to the normal one. Thus, the difference between the normal and horizontal branches is that in the normal branch, the disk dominates the flux while in the horizontal one it is the Comptonized component which dominates. The disk flux scales with the inner disk temperature as Tin5.5 and not as Tin4 , suggesting that either the inner radius changes dramatically or that the disk is irradiated by the thermal component changing its hardness factor. The power spectra reveal a quasi-periodic oscillation(QPO) whose frequency changes from 30 Hz to 50 Hz. The frequency is found to correlate well with the disk flux ratio. In the 3-20 keV LAXPC band, the r.m.s. of the QPO increases with energy(r.m.s. ∝ E0.8), while the harder X-rays seem to lag the soft ones with a time-delay of milliseconds. The results suggest that the spectral properties of the source are characterized by the disk flux ratio and that the QPO has its origin in the corona producing the thermal Comptonized component.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号