首页> 中文期刊> 《应用数学(英文)》 >Optimal Interpolatory Wavelets Transform for Multiresolution Triangular Meshes

Optimal Interpolatory Wavelets Transform for Multiresolution Triangular Meshes

         

摘要

In recent years, several matrix-valued subdivisions have been proposed for triangular meshes. The ma-trix-valued subdivisions can simulate and extend the traditional scalar-valued subdivision, such as loop and subdivision. In this paper, we study how to construct the matrix-valued subdivision wavelets, and propose the novel biorthogonal wavelet based on matrix-valued subdivisions on multiresolution triangular meshes. The new wavelets transform not only inherits the advantages of subdivision, but also offers more resolutions of complex models. Based on the matrix-valued wavelets proposed, we further optimize the wavelets transform for interactive modeling and visualization applications, and develop the efficient interpolatory loop subdivision wavelets transform. The transform simplifies the computation, and reduces the memory usage of matrix-valued wavelets transform. Our experiments showed that the novel wavelets transform is sufficiently stable, and performs well for noise reduction and fitting quality especially for multiresolution semi-regular triangular meshes.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号