首页> 中文期刊>力学国际期刊(英文) >Finite Element Simulation of a Doubled Process of Tube Extrusion and Wall Thickness Reduction

Finite Element Simulation of a Doubled Process of Tube Extrusion and Wall Thickness Reduction

     

摘要

This research deals with the forward extrusion process of tubes. In this process, a piercing process was carried out on the billet to produce the tube, followed directly by a reduction in the wall thickness. A specific geometrical shape for the piercing zone and the wall thickness reduction zone were chosen and designed. The effects of the redundant shear strain and the magnitude of the extrusion load were investigated and simulated with the finite element method using Q Form software program. Lead was used as model materials since (if the experiments were carried out at room temperature) it has the similar behavior of the steel at high temperature. The results obtained have shown that at the piercing zone, the lowest values of the extrusion load, the redundant strain, the total strain and the finite element effective strain were when a piercing tool (mandrel) of (C = 1.1) was used. While, at the die zone, the lowest values of the extrusion load, the redundant strain, the total strain was when a die of (C = 0.9) was used.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号