首页> 中文期刊> 《凝固态物理国际期刊(英文)》 >Spectroscopic Ellipsometry Study of the Dielectric Function of Cu(Insub1–x/subGasubx/sub)sub3/subSesub5/subBulk Compounds: Identification of Optical Transitions

Spectroscopic Ellipsometry Study of the Dielectric Function of Cu(Insub1–x/subGasubx/sub)sub3/subSesub5/subBulk Compounds: Identification of Optical Transitions

         

摘要

Using Spectroscopic Ellipsometry (SE), the optical properties of Cu(In1−xGax)3Se5 bulk compounds, grown by the Bridgman method, were analyzed by varying x composition (0 ≤ x ≤ 1). Energy levels above the gap in the band scheme were determined by measuring the complex dielectric function ?at room-temperature for energies between 1.5 and 5.5 eV using a variable angle of incidence ellipsometer. The transitions values E1, E2 and E3 were observed above the gap for different samples of Cu(In1−xGax)3Se5 alloy. Whena gallium atom replaces an indium atom, one assumes globally that the levels related to selenium and copper are unchanged. Conversely, the levels corresponding to the conduction band are shifted towards higher energies. Thus, the gap increases as the composition of gallium increases. Spectroscopic Ellipsometry (SE) gave evidence for the interpretation of the choice of gap values which were compatible with that obtained from solar spectrum. Several other characterization methods like Energy Dispersive Spectrometry (EDS), hot point probe method, X-ray diffraction, Photoluminescence (PL), Optical response (Photoconductivity) were presented in this paper. The Cu(In1−xGax)3Se5 have an Ordered Vacancy Chalcopyrite-type structure with lattice constants varying as a function of the x composition. The band gap energy of Cu(In1−xGax)3Se5 compounds is found to vary from 1.23 eV to 1.85 eV as a function of x.

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号