首页> 中文期刊> 《中南大学学报》 >Calculation of electron structure by density function theory and electrochemical process of surface (100) of FeS_2

Calculation of electron structure by density function theory and electrochemical process of surface (100) of FeS_2

         

摘要

The electron structure of FeS2 surface (100) was computed by DFT (density function theory) and the process of electron transfer in sulfide flotation was simulated through ab-initio calculation. The results show that the interaction between xanthate and FeS2 is controlled by the energy of valence band. The products and degree of the reaction depend on the density of state of valence band and concentration of positive hole in valence band. Interaction between xanthate and pyrite can be changed by modifying the election structure of the surface of pyrite. Xanthate is adsorbed on the surface of intrinsic pyrite. But the amount of xanthate adsorbed on the surface of the pyrite with sulfur vacancy is more than that on the surface of the intrinsic pyrite due to the higher electron and vacancy density. Xanthate is not adsorbed on the surface of pyrite with Fe vacancy because of its high Fermi energy.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号