首页> 中文期刊> 《现代物理(英文)》 >Quantum Interference without Quantum Mechanics

Quantum Interference without Quantum Mechanics

         

摘要

A recently proposed model of the Dirac electron, which has been shown to describe several observed properties of the particle correctly, is in the present paper shown to be also able to explain quantum interference by classical probabilities. According to this model, the electron is not point-like, but rather an “entity with structure”, formed by a fast periodic motion of a “light-like object”, whose momentum (p) causes the angular momentum responsible for the spin, and whose energy (E = pc) is equal to the energy of the electron, mc2. A qualitative description of the model is given, together with the quantitative formulae that allow to discuss interference. Applied to the experimental situation of the “two-slit” experiment, the formulae yield the same time dependence of the detection probability as the quantum mechanical treatment, and hence the same interference pattern. In contrast to quantum mechanics, the pattern is due to “particle interference” rather than to “wave interference”. No wave-particle paradox arises. The merits of the model are summarized, and its physical content discussed.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号