首页> 中文期刊> 《现代物理(英文)》 >Temperature Scaling in Flat Space Cosmology in Comparison to Standard Cosmology

Temperature Scaling in Flat Space Cosmology in Comparison to Standard Cosmology

         

摘要

Flat Space Cosmology (FSC) is a mathematical model of universal expansion which has proven to be remarkably accurate in comparison to observations. Temperature scaling is redefined in this paper in terms of a new “Universal Temperature” Tu scale according to Tu = T 2, where T 2 is in K2. This rescaling puts FSC cosmic temperature, time, total matter mass, and Hubble radius on the same scale, covering roughly 60.63 logs of 10 from the Planck scale to the present scale. This paper focuses on the relatively subtle temperature curve differences between the FSC model and standard cosmology. These changes become more pronounced in the early universe. Recent observational studies of the early universe, particularly with respect to the “cosmic dawn” epoch, the first stars and first galaxies, have surprised standard model proponents as to how soon these events have occurred following the Big Bang. This paper suggests that, because the FSC model temperature/time curve is lower at each stage of cosmic time, FSC may actually be a better fit for the timing of these events.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号