首页> 中文期刊>现代物理(英文) >Calculation of the Universal Gravitational Constant, of the Hubble Constant, and of the Average CMB Temperature

Calculation of the Universal Gravitational Constant, of the Hubble Constant, and of the Average CMB Temperature

     

摘要

Dirac made the hypothesis that all large, dimensionless numbers that could be constructed from the important natural units of cosmology and atomic theory were connected [1] [2]. Although Dirac did not succeed in exactly matching all these numbers, he suspected that there was a way to unify all of them. Dirac’s hypothesis leads to the N constant which unifies most of physics’ parameters. It represents the maximum number of photons with a wavelength equal to the universe circumference. Using a new cosmological model, we found the β constant which represents the ratio between the expansion speed of matter in the universe and the speed of light. With these constants, we can now calculate accurately several physics parameters, including the universal gravitational constant G, the Hubble constant H0, and the average temperature T of the cosmological microwave background (CMB). Our equations show that G, H0 and T are not really constant over space and time.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号