首页> 中文期刊> 《复合材料期刊(英文)》 >Effects of Fiber Volume on Modal Response of Through-Thickness Angle Interlock Textile Composites

Effects of Fiber Volume on Modal Response of Through-Thickness Angle Interlock Textile Composites

         

摘要

Prior static studies of three-dimensionally woven carbon/epoxy textile composites show that large interlaminar normal and shear strains occur as a result of layer waviness under static compression loading. This study addresses the dynamic response of 3D through-thickness angle interlock textile composites, and how interaction between different layer waviness influences the modal frequencies. The samples have common as-woven textile architecture, but they are cured at varying compaction pressures to achieve varying levels of fiber volume and fiber architecture distortion. Samples produced have varying final cured laminate thickness, which allows observations on the influence of increased fiber volume (generally believed to improve mechanical performance) weighed against the increased fiber distortion (generally believed to decrease mechanical performance). The results obtained from this study show that no added damping was developed in the as-woven identical panels. Furthermore, a linear relation exists between modal frequency and thickness (fiber volume).

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号