首页> 中文期刊> 《世界生物化学杂志:英文版(电子版)》 >High tolerance to mutations in a Chlamydia trachomatis peptide deformylase loop

High tolerance to mutations in a Chlamydia trachomatis peptide deformylase loop

         

摘要

AIM:To determine if and how a loop region in the peptide deformylase(PDF)of Chlamydia trachomatis regulates enzyme function. METHODS:Molecular dynamics simulation was used to study a structural model of the chlamydial PDF(cPDF) and predict the temperature factor per residue for the protein backbone atoms.Site-directed mutagenesis was performed to construct cPDF variants.Catalytic properties of the resulting variants were determined by an enzyme assay using formyl-Met-Ala-Ser as a substrate. RESULTS:In silico analysis predicted a significant increase in atomic motion in the DGELV sequence(residues 68-72)of a loop region in a cPDF mutant,which isresistant to PDF inhibitors due to two amino acid substitutions near the active site,as compared to wild-type cPDF.The D68R and D68R/E70R cPDF variants demonstrated significantly increased catalytic efficiency.The E70R mutant showed only slightly decreased efficiency. Although deletion of residues 68-72 resulted in a nearly threefold loss in substrate binding,this deficiency was compensated for by increased catalytic efficiency. CONCLUSION:Movement of the DGELV loop region is involved in a rate-limiting conformational change of the enzyme during catalysis.However,there is no stringent sequence requirement for this region for cPDF enzyme activity.

著录项

相似文献

  • 中文文献
  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号