首页> 中文期刊> 《现代物理(英文)》 >Theoretical Study with Rovibrational and Dipole Moment Calculation of the SiO Molecule

Theoretical Study with Rovibrational and Dipole Moment Calculation of the SiO Molecule

             

摘要

Via CASSCF/MRCI and RSPT2 calculations (single and double excitation with Davidson correction) the potential en- ergy curves of 20 electronic states in the representation 2S+1Λ(±)of the molecule SiO have been calculated. By fitting these potential energy curves to a polynomial around the equilibrium internuclear distance re, the harmonic frequency ωe, the rotational constant Be, and the electronic energy with respect to the ground state Te have been calculated. For the considered electronic states the permanent dipole moment μ have been plotted versus the internuclear distance r. Based on the canonical functions approach, the eigenvalues Ev, the rotational constant Bv and the abscissas of the turning points rmin and rmax have been calculated. The comparison of these values to the experimental and theoretical results available in the literature is presented. In the present work 8 higher electronic states have been studied theoretically for the first time.

著录项

相似文献

  • 中文文献
  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号