首页> 中文期刊> 《自然科学期刊(英文)》 >Liquid Pre-Freezing Percolation Transition to Equilibrium Crystal-in-Liquid Mesophase

Liquid Pre-Freezing Percolation Transition to Equilibrium Crystal-in-Liquid Mesophase

         

摘要

Pre-freezing anomalies are explained by a percolation transition that delineates the existence of a pure equilibrium liquid state above the temperature of 1st-order freezing to the stable crystal phase. The precursor to percolation transitions are hetero-phase fluctuations that give rise to molecular clusters of an otherwise unstable state in the stable host phase. In-keeping with the Ostwald’s step rule, clusters of a crystalline state, closest in stability to the liquid, are the predominant structures in pre-freezing hetero-phase fluctuations. Evidence from changes in properties that depend upon density and energy fluctuations suggests embryonic nano-crystallites diverge in size and space at a percolation threshold, whence a colloidal-like equilibrium is stabilized by negative surface tension. Below this transition temperature, both crystal and liquid states percolate the phase volume in an equilibrium state of dispersed coexistence. We obtain a preliminary estimate of the prefreezing percolation line for water determined from higher-order discontinuities in Gibbs energy that derivatives the isothermal rigidity [(dp/dρ)T] and isochoric heat capacity [(dU/dT)v] respectively. The percolation temperature varies only slightly with pressure from 51.5°C at 0.1 MPa to around 60°C at 100 MPa. We conjecture that the predominant dispersed crystal structure is a tetrahedral ice, which is the closest of the higher-density ices (II to XV) to liquid water in configurational energy. Inspection of thermodynamic and transport properties of liquid argon also indicate the existence of a similar prefreezing percolation transition at ambient pressures (0.1 MPa) around 90 K, ~6% above the triple point (84 K). These findings account for many anomalous properties of equilibrium and supercooled liquids generally, and also explain Kauzmann’s “paradox” at a “glass” transition.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号