首页> 中文期刊> 《现代物理(英文)》 >iAb-Initio/iComputations of Electronic, Transport, and Structural Properties of izinc-blende/iBeryllium Selenide (izb/i-BeSe)

iAb-Initio/iComputations of Electronic, Transport, and Structural Properties of izinc-blende/iBeryllium Selenide (izb/i-BeSe)

         

摘要

We report results from several ab-initio computations of electronic, transport and bulk properties of zinc-blende beryllium selenide (zb-BeSe). Our nonrelativistic calculations utilized a local density approximation (LDA) potential and the linear combination of atomic orbitals (LCAO). The key distinction of our calculations from other DFT calculations is the implementation of the Bagayoko, Zhao and Williams (BZW) method, as enhanced by Ekuma and Franklin (BZW-EF), in the LCAO formalism. Our calculated, indirect band gap is 5.46 eV, from Γto a conduction band minimum between Г and X, for a room temperature lattice constant of 5.152 Å. Available, room temperature experimental band gaps of 5.5 (direct) and 4 - 4.5 (unspecified) point to the need for additional measurements of this gap. Our calculated bulk modulus of 92.35 GPa is in excellent agreement with experiment (92.2 ±?1.8 GPa). Our predicted equilibrium lattice constant and band gap, at zero temperature, are 5.0438 Åand 5.4 eV, respectively.

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号